TELEFUNKEN Semiconductors

2.9 GHz PLL for SAT TV Receiver with Universal Bus

Features

- 2.9 GHz divide-by-16 prescaler integrated
- Universal bus:
$\mathrm{I}^{2} \mathrm{C}$-bus or 3-wire-bus
$\mathrm{I}^{2} \mathrm{C}$-bus software compatible to U6204B
3-wire-bus software compatible to U6358B (19 bit)
- $\mathrm{I}^{2} \mathrm{C}$-bus mode:

5 switching outputs (open collector) 4 addresses selectable at pin 10 for multituner application

- 3-wire-bus mode:

4 switching outputs (open collector)
Locksignal output (open collector)

- Low power consumption (typical $5 \mathrm{~V} / 23 \mathrm{~mA}$)
- Electrostatic protection according to MIL-STD 883

Package: SO16 small

Block Diagram

Figure 1. Block diagram

Temic

TELEFUNKEN Semiconductors

Pin Description

Figure 2.

Absolute Maximum Ratings

All voltages are referred to GND (Pin 15)

Parameters	Symbol	Value	Unit
Supply voltage Pin 12	Vs	-0.3 to 6	V
RF input voltage \quad Pin 13, 14	RFi	-0.3 to Vs+0.3	V
$\begin{array}{\|cc\|} \hline \text { Switching output current } & \text { Open collectors } \\ \text { Pin } 6-9,11 \end{array}$	SW 1, 4-7	-1 to 15	mA
Total current of switching outputs $\begin{array}{l}\text { Open collectors } \\ \text { Pin } 6-9,11\end{array}$	SW 1, 4-7	50	mA
Switching output voltage in off state: in on state:\quad Pin 6-9,11	SW 1, 4-7	$\begin{aligned} & -0.3 \text { to } 14 \\ & -0.3 \text { to } 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Bus input/output voltage	$\begin{aligned} & \text { VSDA } \\ & \text { VSCL } \end{aligned}$	$\begin{aligned} & -0.3 \text { to } 6 \\ & -0.3 \text { to } 6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
SDA output current open collector Pin 4	ISDA	-1 to 5	mA
Address select voltage Pin 10	VAS / ENA	-0.3 to Vs+0.3	V
Charge pump output voltage \quad Pin 1	PD	-0.3 to Vs+0.3	V
Active filter output voltage 	VD	-0.3 to Vs+0.3	V
Crystal oscillator voltage Pin 2	Q1	-0.3 to Vs+0.3	V
Junction temperature	T_{j}	-40 to 125	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

TELEFUNKEN Semiconductors
U6225B-BFP

Operating Range

All voltages are referred to GND (Pin 15)

	Parameters	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Pin 12	Vs^{2}	4.5	5.5		V
Ambient temperature		$\mathrm{T}_{\mathrm{amb}}$	0	70		
Input frequency	Pin 13, 14	R_{Fi}	250	2900		CHz
Progr. divider		S_{F}	256	32767		

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	$\mathrm{R}_{\text {thJA }}$	110	K/W

Electrical Characteristics

Test conditions: $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameters	Test Conditions / Pins	Symbol	Min.	Typ.	Max.	Unit
Supply current	$\text { SW } 1,4,5,6,7=0 \quad \text { Pin } 12$	Is	18	23	28	mA
Input sensitivity						
Input frequency	$\begin{array}{ll} \hline \mathrm{fi}=250 \mathrm{MHz}, & \text { Pin } 13 \\ \mathrm{fi}=750-2900 \mathrm{MHz}, & \text { Pin } 13 \end{array}$	$\begin{aligned} & \hline \mathrm{Vi}{ }^{1)} \\ & \mathrm{Vi}{ }^{11} \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$		$\begin{aligned} & 300 \\ & 300 \end{aligned}$	mVrms mVrms
Crystal oscillator						
Recommended crystal series resistance			10		200	Ω
Crystal oscillator drive level	Pin 2			50		mVrms
Crystal oscillator source impedance	$\begin{array}{r} \text { Nominal spread } \pm 15 \% \\ \text { Pin } 2 \end{array}$			-650		Ω
External reference input frequency	AC coupled sinewave Pin 2		2		8	MHz
External reference input amplitude	AC coupled sinewave Pin 2		70		200	mVrms

Switching outputs (SW4-7, Pin 6-9), lock output, open collector (SW1, Pin 11)

Leakage current	$\mathrm{VH}=13.5 \mathrm{~V}$	IL			10	$\mu \mathrm{~A}$
Saturation voltage	$\mathrm{IL}=10 \mathrm{~mA}$	VSL $\left.^{2}\right)$			0.5	V

Charge pump output (PD)

Charge pump current 'H'	$5 \mathrm{I}=\mathrm{H}, \mathrm{VPD}=2 \mathrm{~V}$					
Charge pump current 'L'	$5 \mathrm{I}=\mathrm{L}, \mathrm{VPD}=2 \mathrm{~V}$	Pin 1	IPDH		± 180	
Charge pump leakage current	$\mathrm{T} 0=0, \mathrm{VPD}=2 \mathrm{~V}$	Pin 1	IPDL		± 50	
Charge pump amplifier gain	Pin 1	IPDTRI				

Bus inputs (SDA, SCL)

Input voltage	$\begin{aligned} & \text { Pin } 4,5 \\ & \text { Pin } 4.5 \end{aligned}$	$\begin{aligned} & \text { Vi 'H' } \\ & \text { Vi 'L' } \end{aligned}$	3	$\begin{aligned} & 5.5 \\ & 1.5 \end{aligned}$	V

Parameters	Test Conditions / Pins	Symbol	Min.	Typ.	Max.	Unit
Input current	VSCL 'H' $=$ Vs Pin 4,5 VSCL 'L' $=0 \mathrm{~V}$ $\operatorname{Pin} 4,5$	$\begin{aligned} & \text { li 'H' } \\ & \text { li ' }{ }^{\prime} \text { ' } \end{aligned}$	-10		10	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Leakage current	$\mathrm{Vs}=0 \mathrm{~V} \quad$ Pin 4, 5	IL			10	$\mu \mathrm{A}$
Output voltage SDA (open collector)	ISDA 'L' $=2 \mathrm{~mA}, \quad$ Pin 4	VSDA 'L'			0.4	V
Address selection / Enable input (AS, ENA)						
Input current	VAS ' ${ }^{\prime}$ ' $=$ Vs Pin 10 VAS ${ }^{\prime} \mathrm{L} '=0$ Pin 10	$\begin{aligned} & \text { liAS 'H' } \\ & \text { liAS 'L' } \end{aligned}$	-100		10	$\mu \mathrm{A}$ $\mu \mathrm{A}$

1) RMS-voltage calculated from the measured available power on 50Ω
2) Tested with one switch active, the collector voltage may not exceed 6 V

Description

The U6225B-B is a single chip PLL designed for SAT-TV receiver systems. It consists of a divide-by- 16 prescaler with an integrated preamplifier, a 15 bit programmable divider, a crystal oscillator with a divide-by-512 reference divider, a phase/frequency detector together with a charge-pump, which is driving the tuning amplifier. Only one external transistor is required for varactor line driving. The device can be controlled via $\mathrm{I}^{2} \mathrm{C}$-bus format or the 3 -wire-bus format. It detects automatically which bus format is received, therefore there is no need of a bus selection pin. In $\mathrm{I}^{2} \mathrm{C}$-bus mode the device has 4 programmable addresses, programmed by applying a specific input voltage to the address select input, enabling the use of up to four synthesizers in a system. The same pin serves in 3-wire-bus mode as the enable signal input. Five open collector outputs for switching functions are included, which are capable of sinking at least 10 mA . One of these open collector outputs serves as Locksignal output in the 3-wire-bus mode.

Functional Description

The U6225B-B is programmed via 2 -wire $I^{2} \mathrm{C}$ bus or 3-wire bus depending on the received data format. The three bus inputs pin 4, 5, 10 are used as SDA, SCL and ADDRESS SELECT inputs in $\mathrm{I}^{2} \mathrm{C}$-bus mode and as DATA, CLOCK and ENABLE inputs in 3-wire bus mode. The data includes the scaling factor SF (15 bit) and switching output information. In $\mathrm{I}^{2} \mathrm{C}$-bus mode there are some additional functions for testing of the device included.

Oscillator Frequency Calculation

fveo $=16 * S F *$ frefosc $/ 512$

$\left.\begin{array}{cc}\text { fvco: Locked frequency of voltage controlled } \\ \text { oscillator }\end{array}\right] \begin{aligned} & \text { Scaling factor of programmable } \\ & \text { 15-bit-divider }\end{aligned}$
frefosc: Reference oscillator frequency: 3.2 / 4 MHz crystal or external reference frequency

The input amplifier together with a divide-by-16 prescaler gives an excellent sensitivity (see 'Typical Prescaler Input Sensitivity'). The input impedance is shown in the diagram 'Typical Input Impedance'. When a new divider ratio according to the requested fvco is entered, the phase detector and charge pump together with the tuning amplifier adjusts the control voltage of the VCO until the output signals of the programmable divider and the reference divider are in frequency and phase locked. The reference frequency may be provided by an external source capacitively coupled into pin 2 , or by using an on-board crystal with an 18 pF capacitor in series. The crystal operates in the series resonance mode. The reference divider division ratio is fixed to 512 . Therefore with a 4 MHz crystal the comparison frequency is 7.8125 kHz , which gives 125 kHz steps for the VCO, or with a 3.2 MHz crystal respectively 6.25 kHz comparison frequency and 100 kHz VCO step size. In addition there are switching outputs available for bandswitching and other purposes.

Application

A typical application is shown on page ?. All input / output interface circuits are shown on page ?. Some special features which are related to test- and alignment procedures for tuner production are explained together within the following bus mode description.

$\mathbf{I}^{2} \mathrm{C}$-Bus Description

When the U6225B-B is controlled via 2-wire $\mathrm{I}^{2} \mathrm{C}$-bus format, then data and clock signals are fed into the SDA and SCL lines respectively. The table ' $I^{2} \mathrm{C}$-BUS DATA FORMAT' describes the format of the data and shows how to select the device address by applying a voltage at pin 10 . When the correct address byte is received, the SDA line is pulled low by the device during the acknowledge pe-
riod, and then also during the acknowledge periods, when additional data bytes are programmed. After the address transmission (first byte), data bytes can be sent to the device. There are four data bytes requested to fully program the device. The table ' $\mathrm{I}^{2} \mathrm{C}$-Bus Pulse Diagram' shows some possible data transfer examples.

Programmable divider bytes PDB1 and PDB2 are stored in a 15 bit latch and are controlling the division ratio of the 15 bit programmable divider. The control Byte CB1 allows to control the following special functions:

- 5I-bit switches between low and high charge pump current
- T1-bit enables divider test mode when it is set to logic 1
- T0-bit allows to disable the charge pump when it is set to logic 1
- OS-bit disable the charge pump drive amplifier output when it is set to logic 1 .

Only in $\mathrm{I}^{2} \mathrm{C}$ bus mode the charge pump current can be controlled. In 3-wire-bus mode there is always the high charge pump current active. The OS-bit function disables the complete PLL function. This allows the tuner alignment by suppling the tuning voltage directly through the 30 V supply voltage of the tuner.

The control byte CB2 programs the switching outputs SW $1,4,5,6,7$; a logic 0 for high impedance output (off) and a logic 1 for low impedance output (on).

Description	$\mathrm{I}^{2} \mathrm{C}$ Bus Data Format								
	LSB								
Address byte	1	1	0	0	0	AS1	AS2	0	A
Progr. divider byte 1	0	n 14	n 13	n 12	n 11	n 10	n 9	n 8	A
Progr. divider byte 2	n 7	n 6	n 5	n 4	n 3	n 2	n 1	n 0	A
Control byte 1	1	5 I	T 1	T 0	X	X	X	OS	A
Control byte 2	SW7	SW6	SW5	SW4	X	SW2	SW1	X	A

$\mathrm{A}=$ Acknowledge; $\mathrm{X}=$ not used; Unused bits of controlbyte 2 should be 0 for lowest power consumption
n0 ... n14
T0, T1

SW1, 4, 5, 6, 7 Switching outputs
5I

OS

AS1, AS2

Scaling factor (SF)
Testmode selection

Charge pump current switch
Output switch
Address selection pin 10
$\mathrm{SF}=16384 * \mathrm{n} 14+8192 * \mathrm{n} 13+\ldots+2 * \mathrm{n} 1+\mathrm{n} 0$
$\mathrm{T} 1=1$: divider test mode on
$\mathrm{T} 1=0$: divider test mode off
T0 $=1$: charge pump disable
T0 = 0: charge pump enable
SW1, SW4, SW5, SW6, SW7 = 1: open collector active
$5 \mathrm{I}=1$: high current
$5 \mathrm{I}=0$: low current
$\mathrm{OS}=1$: varicap driver disable
OS = 0: varicap drive enable

AS1	AS2	Address	Dec. Value	Voltage at pin 10
0	1	1	194	open
0	0	2	192	0 to 10% Vs
1	0	3	196	40 to 60% Vs
1	1	4	198	90 to 100% Vs

Temic

$I^{\mathbf{2}} \mathbf{C}$-Bus Pulse Diagram

\qquad ADDRESS BYTE \qquad /A/ 1.BYTE /A/ 2.BYTE /A/ 3.BYTE /A/ 4.BYTE /A/

Figure 3.

Data transfer examples
START ADR PDB1 PDB2 CB1 CB2 STOP
START ADR CB1 CB2 PDB1 PDB2 STOP
START ADR PDB1 PDB2 CB1 STOP
START ADR CB1 CB2 PDB1 STOP
START ADR PDB1 PDB2 STOP
START ADR CB1 CB2 STOP
START ADR CB1 STOP

Description
START = Start condition
ADR = Address byte
PDB1 = Progr. divider byte 1
PDB2 $=$ Prgr. divider byte 2
CB1 = Control byte 1
CB2 $=$ Control byte 2
STOP = Stop condition

$I^{2} \mathbf{C}$-Bus Timing

Figure 4.

Parameters	Symbol	Min.	Typ.	Max.
Rise time SDA, SCL	tR		15	$\mu \mathrm{~s}$
Fall time SDA, SCL	tF		15	$\mu \mathrm{~s}$
Clock frequency SCL	fSCL	0	100	kHz
Clock 'H' pulse	tHIGH	4		$\mu \mathrm{~s}$
Clock 'L' pulse	tLOW	4		$\mu \mathrm{~s}$
Hold time start	tH STT	4		$\mu \mathrm{~s}$
Waiting time start	tW STT	4		$\mu \mathrm{~s}$
Set-up time start	tS STT	4		$\mu \mathrm{~s}$
Set-up time stop	tS STP	4		$\mu \mathrm{~s}$
Set-up time data	tS DAT	0.3		$\mu \mathrm{~s}$
Hold time data	tH DAT	0		$\mu \mathrm{~s}$

3-Wire-Bus Description

When the U6225B-B is controlled via 3-wire bus format, then DATA, CLOCK and ENABLE signals are fed into the SDA, SCL and AS/ENA lines respectively. The diagram '3-WIRE-BUS PULSE DIAGRAM' shows the data format. The data consist of a single word, which contains the programmable divider and switch information. Only during the enable high period the data is clocked into the internal data shift register on the negative clock transition. During enable low periods the clock input is disabled. New data words are only accepted by the internal data latches from the shift register on a negative transition of the enable signal when during the high period of the enable exactly nineteen clock pulses were send. The data sequence and the timing is described in the following diagrams.

In 3-wire-bus mode pin 11 becomes automatically the Locksignal output. An improved lock detect circuit generates a flag when the loop has attained lock. 'In lock' is indicated by a low impedance state (on) of the open collector output.

In 3-wire-bus mode there is always the high charge pump current active. Only in $\mathrm{I}^{2} \mathrm{C}$-bus mode the charge pump current can be controlled.

The complete PLL function can be disabled by programming a normally not used division ratio of zero. This allows the tuner alignment by supplying the tuning voltage directly through the 30 V supply voltage of the tuner.

3-Wire-Bus Pulse Diagram

Figure 5.

3-Wire-Bus Timing

Figure 6.

Parameters	Symbol	Min.	Typ.	Unit
Set up time	TS	2		$\mu \mathrm{~s}$
Enable hold time	TSL	2		$\mu \mathrm{~s}$
Clock width	TC	2		$\mu \mathrm{~s}$
Enable set up time	TL	10		$\mu \mathrm{~s}$
Enable between two transmissions	TT	10		$\mu \mathrm{~s}$
Data hold time	TH	2		$\mu \mathrm{~s}$

Input/Output Interface Circuits

Figure 7. RF input

Figure 8. Reference oscillator

Figure 9. SCL and SDA input

Figure 10. Ports

Figure 11. Address select/ Enable input

Figure 12. Loop amplifier

TELEFUNKEN Semiconductors
U6225B-BFP

Typical Prescaler Input Sensitivity

Vi (mV RMS on 50 Ohm)

Figure 13.

Typical Input Impedance

Figure 14.

Application Circuit

Figure 15.

Dimensions in mm

Package: SO-16 small

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0) 7131672423

